Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.

Identifieur interne : 004421 ( Main/Exploration ); précédent : 004420; suivant : 004422

Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.

Auteurs : Karl W. Kleiner [États-Unis] ; David D. Ellis ; Brent H. Mccown ; Kenneth F. Raffa

Source :

RBID : pubmed:14682535

Descripteurs français

English descriptors

Abstract

We tested the hypothesis that ontogenetic variation in leaf chemistry could affect the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin, and thus provide spatial variation in (1) foliage protection and (2) selective pressures that could delay the resistance of folivores. Our model consisted of clonal hybrid Populus plants (NC5339). Consumption of foliage and relative growth rates of gypsy moth, Lymantria dispar (L.) increased, and phenolic glycoside concentrations decreased, as leaves from transformed plants containing the cry1A(a) d-endotoxin and nontransformed plants matured from leaf plastochron index (LPI) 1-6. Feeding and growth rates were negatively correlated with phenolic glycosides in both transformed and nontransformed foliage. The presence of the B. thuringiensis d-endotoxin was at most, additive to the effect of the phenolic glycosides. Feeding and growth rates were positively correlated with condensed tannins in transformed foliage, but there was no relationship with condensed tannins in nontransformed foliage. The results indicate that the presence of foliar allelochemicals of poplar can enhance the effectiveness of genetically expressed B. thuringiensis d-endotoxin against gypsy moth larvae. However, the spatial variation in gypsy moth performance in response to the combination of foliar allelochemicals and d-endotoxin was not greater than the effect of ontogenetic variation in foliar allelochemicals alone. These results suggest that for this important pest, foliage protection may be obtained without genetically engineered defenses, and instead, by relying on ontogenetic and clonal variation in allelochemicals. The benefits of combining novel resistance mechanisms with natural ones will depend upon the specific folivore's adaptation to natural resistance mechanisms, such as allelochemicals. Moreover, some of the greatest benefits from transgenic resistance may arise from the need to protect trees from multiple pests, some of which may not be deterred by, or may even prefer, allelochemicals that confer protection from a few species.

DOI: 10.1023/a:1026370220613
PubMed: 14682535


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.</title>
<author>
<name sortKey="Kleiner, Karl W" sort="Kleiner, Karl W" uniqKey="Kleiner K" first="Karl W" last="Kleiner">Karl W. Kleiner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, USA. kkleiner@ycp.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ellis, David D" sort="Ellis, David D" uniqKey="Ellis D" first="David D" last="Ellis">David D. Ellis</name>
</author>
<author>
<name sortKey="Mccown, Brent H" sort="Mccown, Brent H" uniqKey="Mccown B" first="Brent H" last="Mccown">Brent H. Mccown</name>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14682535</idno>
<idno type="pmid">14682535</idno>
<idno type="doi">10.1023/a:1026370220613</idno>
<idno type="wicri:Area/Main/Corpus">004367</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004367</idno>
<idno type="wicri:Area/Main/Curation">004367</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004367</idno>
<idno type="wicri:Area/Main/Exploration">004367</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.</title>
<author>
<name sortKey="Kleiner, Karl W" sort="Kleiner, Karl W" uniqKey="Kleiner K" first="Karl W" last="Kleiner">Karl W. Kleiner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, USA. kkleiner@ycp.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ellis, David D" sort="Ellis, David D" uniqKey="Ellis D" first="David D" last="Ellis">David D. Ellis</name>
</author>
<author>
<name sortKey="Mccown, Brent H" sort="Mccown, Brent H" uniqKey="Mccown B" first="Brent H" last="Mccown">Brent H. Mccown</name>
</author>
<author>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="ISSN">0098-0331</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacillus thuringiensis (genetics)</term>
<term>Bacillus thuringiensis (physiology)</term>
<term>Endotoxins (biosynthesis)</term>
<term>Feeding Behavior (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Moths (genetics)</term>
<term>Moths (physiology)</term>
<term>Phenols (pharmacology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (growth & development)</term>
<term>Populus (chemistry)</term>
<term>Tannins (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bacillus thuringiensis (génétique)</term>
<term>Bacillus thuringiensis (physiologie)</term>
<term>Comportement alimentaire (MeSH)</term>
<term>Endotoxines (biosynthèse)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Papillons de nuit (génétique)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Phénols (pharmacologie)</term>
<term>Populus (composition chimique)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Tanins (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Endotoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Endotoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus thuringiensis</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacillus thuringiensis</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Phénols</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Phenols</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Bacillus thuringiensis</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bacillus thuringiensis</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Feeding Behavior</term>
<term>Gene Expression Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Comportement alimentaire</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We tested the hypothesis that ontogenetic variation in leaf chemistry could affect the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin, and thus provide spatial variation in (1) foliage protection and (2) selective pressures that could delay the resistance of folivores. Our model consisted of clonal hybrid Populus plants (NC5339). Consumption of foliage and relative growth rates of gypsy moth, Lymantria dispar (L.) increased, and phenolic glycoside concentrations decreased, as leaves from transformed plants containing the cry1A(a) d-endotoxin and nontransformed plants matured from leaf plastochron index (LPI) 1-6. Feeding and growth rates were negatively correlated with phenolic glycosides in both transformed and nontransformed foliage. The presence of the B. thuringiensis d-endotoxin was at most, additive to the effect of the phenolic glycosides. Feeding and growth rates were positively correlated with condensed tannins in transformed foliage, but there was no relationship with condensed tannins in nontransformed foliage. The results indicate that the presence of foliar allelochemicals of poplar can enhance the effectiveness of genetically expressed B. thuringiensis d-endotoxin against gypsy moth larvae. However, the spatial variation in gypsy moth performance in response to the combination of foliar allelochemicals and d-endotoxin was not greater than the effect of ontogenetic variation in foliar allelochemicals alone. These results suggest that for this important pest, foliage protection may be obtained without genetically engineered defenses, and instead, by relying on ontogenetic and clonal variation in allelochemicals. The benefits of combining novel resistance mechanisms with natural ones will depend upon the specific folivore's adaptation to natural resistance mechanisms, such as allelochemicals. Moreover, some of the greatest benefits from transgenic resistance may arise from the need to protect trees from multiple pests, some of which may not be deterred by, or may even prefer, allelochemicals that confer protection from a few species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14682535</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>03</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0098-0331</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>29</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2003</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.</ArticleTitle>
<Pagination>
<MedlinePgn>2585-602</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We tested the hypothesis that ontogenetic variation in leaf chemistry could affect the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin, and thus provide spatial variation in (1) foliage protection and (2) selective pressures that could delay the resistance of folivores. Our model consisted of clonal hybrid Populus plants (NC5339). Consumption of foliage and relative growth rates of gypsy moth, Lymantria dispar (L.) increased, and phenolic glycoside concentrations decreased, as leaves from transformed plants containing the cry1A(a) d-endotoxin and nontransformed plants matured from leaf plastochron index (LPI) 1-6. Feeding and growth rates were negatively correlated with phenolic glycosides in both transformed and nontransformed foliage. The presence of the B. thuringiensis d-endotoxin was at most, additive to the effect of the phenolic glycosides. Feeding and growth rates were positively correlated with condensed tannins in transformed foliage, but there was no relationship with condensed tannins in nontransformed foliage. The results indicate that the presence of foliar allelochemicals of poplar can enhance the effectiveness of genetically expressed B. thuringiensis d-endotoxin against gypsy moth larvae. However, the spatial variation in gypsy moth performance in response to the combination of foliar allelochemicals and d-endotoxin was not greater than the effect of ontogenetic variation in foliar allelochemicals alone. These results suggest that for this important pest, foliage protection may be obtained without genetically engineered defenses, and instead, by relying on ontogenetic and clonal variation in allelochemicals. The benefits of combining novel resistance mechanisms with natural ones will depend upon the specific folivore's adaptation to natural resistance mechanisms, such as allelochemicals. Moreover, some of the greatest benefits from transgenic resistance may arise from the need to protect trees from multiple pests, some of which may not be deterred by, or may even prefer, allelochemicals that confer protection from a few species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kleiner</LastName>
<ForeName>Karl W</ForeName>
<Initials>KW</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, USA. kkleiner@ycp.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>David D</ForeName>
<Initials>DD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCown</LastName>
<ForeName>Brent H</ForeName>
<Initials>BH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raffa</LastName>
<ForeName>Kenneth F</ForeName>
<Initials>KF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004731">Endotoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001413" MajorTopicYN="N">Bacillus thuringiensis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004731" MajorTopicYN="N">Endotoxins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14682535</ArticleId>
<ArticleId IdType="doi">10.1023/a:1026370220613</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1980 Jul;46(1):22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invertebr Pathol. 1992 Mar;59(2):149-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1607666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2001 Feb;94(1):284-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11233127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Dec;85(4):1103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1992;37:91-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1539942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1991 Feb;9(10):590-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2001 Feb;94(1):240-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11233120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1985 Oct;11(10):1349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24311178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Aug;120(2):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1986 Dec;2(1_2_3):289-299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1992;37:615-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1311541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Jul;72 (4):527-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Mar;75(2):185-189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1989 Jun;53(2):242-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2666844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 Mar 14;231(4743):1255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17839561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Jun;57(6):1650-1655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 May;119(3):408-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2001 Jun;94(3):698-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11425026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 1998;43:571-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1993 Nov;19(11):2485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24248705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ellis, David D" sort="Ellis, David D" uniqKey="Ellis D" first="David D" last="Ellis">David D. Ellis</name>
<name sortKey="Mccown, Brent H" sort="Mccown, Brent H" uniqKey="Mccown B" first="Brent H" last="Mccown">Brent H. Mccown</name>
<name sortKey="Raffa, Kenneth F" sort="Raffa, Kenneth F" uniqKey="Raffa K" first="Kenneth F" last="Raffa">Kenneth F. Raffa</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kleiner, Karl W" sort="Kleiner, Karl W" uniqKey="Kleiner K" first="Karl W" last="Kleiner">Karl W. Kleiner</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004421 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004421 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14682535
   |texte=   Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin in hybrid poplar against gypsy moth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14682535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020